Online Entertainment Database

Overview

The goal of the project was to create an online database for people interested in nightlife actives. The information one could call up with a click of a mouse would be tied directly with this model. For example, one could obtain a listing of nightclubs in their city, find out if and where their favorite DJ is spinning (playing) that night, the kinds of music being played, even find out which clubs their favorite celebrities visit. The database can also be used to connect club-goers with similar tastes and/or locations via an incorporated user database.

Detailed Database Description

For ease of reading, the descriptions of the relations have been broken down by relation. The corresponding E-R diagram and a listing of tables within the database follow the description.

Users

Users are the members of the entertainment community who are members of our system (i.e. they have signed up and submitted the required info). Users have certain advantages over regular club-goers like being able to search for other users and being able to take advantage of special offers and promotions.

Location

Locations are places where parties are hosted. Locations have names (eg. the club or building name), addresses, and types (e.g. a club, a private residence, a school, a bar etc).

Performances
These are musical events that are hosted in various locations, They are basically parties that are either open to the public or invite only. At these performances, either a DJ is spinning or an artist is singing. E.g. Gothic Night would be a night where mostly gothic music is played by a DJ while P.J. Harvey Live would be a musical performance by the singer P.J. Harvey.

Promotion groups

These are groups that organize, advertise, and manage these performances. They are national groups and are involved in most performances. E.g. Dance Your Butt Off Productions presents ladies night at Club Avalon.

Performers

The performer entity can be split into two types; Disk Jockeys and other celebrities

* Disk jockeys-are those people who spin music at a club, their schedule is usually set i.e. you can pretty much predict when and where they will be spinning

* Other celebrities- Refers to those people in the public eye that frequently visit a club. They could be athletes, politician or musicians. These people may or may not perform at the club they visit.

In our database, artists and celebrities are types of (ISA) performer. Each performer has an field identifying them as an artist or a celebrity. Additionally, since MySQL can’t handle foreign keys, the unique ID of a performer (an auto-numbered integer) is used as the unique ID of their entry in either the diskJockey table or the celebrity table.

Favorite DJ

A clubber or user may wish to disclosed who their favorite DJ(s) is/are. This relation ties a user to his or her favorite DJ within the database.

Favorite Location

Similar to “favorite DJ”, except it deals with a favorite location.

User (Web) interface

[image: image1.png]EVICRTAINAAENT
DATABASE PRONECT

Designed By TeamX

[Insert Data] | [Query Data] | [Project Information] | [Cantact Infa]
Welcome!

Welcome to the official project website of Group #3: TeamX. For our class project, we have selected the
option of designing a database. To make it more interesting, the database has been made accessible
online via MySQL and PHP scripting

The goal of our project is to create an orline database for those looking for a club in their area. f we had
the time to fully implernent our ideas, you would be able to search not only by location, but by genre, DJ,
even those visited by famous celebrities! You would even be able to join our userbase for special
promotions and offers:

Of course most of this has not been implemented, (we have an operating bugdet of about $0 for special
promotions,) bt it should give you a taste of what we were striving for. For information behind the internals
of the project, check-out the project information section of the site. Enjoy the sitel

Things to Do:

Insert Data - Page where you can enter data into the database

Query Data - Page showing off some complex queries into the database.

Defete-Data - Ya, like we want to give YOU ability to mess-Up our database. :)

Project Info - Technical Informeation aboLt the project we feel we can make public

Contact Info - Informetion on contacting the staff that has made $1M off this database design

Copyright ©2000 by Seren, Ermeka Onodugo & Andy Wolan
Click hete for contact information
This page Last updated on: 12-12-00

The database was created using MySQL, a free database package. The creation of relations within the database, along with testing and the insertion of data were done via a shell to the software. Though the shell works fine for those with the security clearance to access it, it does not work well for a public demonstration. Therefore, a web based public interface was created to demonstrate the database. This task has been achieved using PHP scripting.

Our optimistic plans for the database was to incorporate it directly into a website that followed our model. Of course, time was not in our favor, so the site has been trimmed down heavily to show off the few exciting things the database could do if the website was completed.

There are two interesting classification of things which you can do on the site: insert data and perform queries. Both provide meaningful error messages in case one occurs and can be corrected by the user. The insertion of data is provided as a means to prove that the database is “live”. There is some level of protection from bad inserts, such as providing a string for an integer, etc.

The queries are far more interesting by the nature of what they accomplish.

There are 2 queries.
Mention URL

If you would like to visit the site, it can be found at http://teamx.emulationzone.org Click on the “CmpSci445” link. The site is best viewed with IE 5.0, but works great with NS 3.X

General Comments

What were the interesting aspects of the project? Was there anything from class that you feel was better illuminated by the work on the project?

We discovered after doing this project that a good E-R diagram goes a long way towards a smooth database.

What type of obstacles did you have to overcome and what did you do to overcome them?

Majority of the problems we ran into in this project involved MySQL syntax and implementation errors. We did most of our MySQL research using documentation from MySQL.com and we discovered the hard way that not all the code they had up on their site was valid.

It was also discovered that MySQL did not support nested queries, this posed as a problem for us when we were trying to come up with some complex queries for the project.

Here are the original versions of two of our queries:

Finds the performances of the most favorite DJ at the most favorite location

#

SELECT * FROM performances WHERE performer = (

SELECT performerID FROM favoriteDJ

GROUP BY performerID HAVING COUNT(*) =

(SELECT MAX (COUNT(*)) FROM favoriteDJ GROUP BY performerID)

) AND location = (

SELECT locationID FROM favoriteLocationt

GROUP BY locationID HAVING COUNT(*) =

(SELECT MAX (COUNT(*)) FROM favoriteLocationt GROUP BY locationID)

)

Finds the DJs who live in the same city as a performance

that occured in the last n days and wasn't promoted

#

#SELECT * FROM diskJockey, performers WHERE diskJockey.performerID =

#performers.performerID AND performers.residentCity =

#(SELECT city FROM location WHERE locationID =

#(SELECT locationID FROM performances WHERE (TO_DAYS(NOW)-TO_DAYS(date)) >

#365 AND promotionsGroups IS NULL))

Because MySQL doesn’t support nested queries yet (it’s slated for the next release), we had to find a way to have the equivalent within flat tables. The second query was easily transformed by using natural joins, but the first table was much harder.

#---------- Final 1st query modified for MySQL -------------------

#

DELETE FROM tmpDJcount;

DELETE FROM tmpLocCount;

DELETE FROM tmpMaxDJ;

DELETE FROM tmpMaxLoc;

DELETE FROM tmpFavDJ;

DELETE FROM tmpFavLoc;

INSERT INTO tmpDJcount SELECT performerID, count(*) FROM favoriteDJ GROUP BY performerID;

INSERT INTO tmpMaxDJ SELECT MAX (DJcount) FROM tmpDJcount;

INSERT INTO tmpFavDJ SELECT diskJockey.performerID FROM diskJockey, tmpDJcount, tmpMaxDJ

 WHERE tmpDJcount.DJcount = tmpMaxDJ.maxDJ

 AND tmpDJcount.performerID = diskJockey.performerID;

INSERT INTO tmpLocCount SELECT locationID, count(*) FROM favoriteLocation GROUP BY locationID;

INSERT INTO tmpMaxLoc SELECT MAX (locCount) FROM tmpLocCount;

INSERT INTO tmpFavLoc SELECT location.locationID FROM location, tmpLocCount, tmpMaxLoc

 WHERE tmpLocCount.locCount = tmpMaxLoc.maxloc

 AND tmpLocCount.locationID = location.locationID;

SELECT * FROM performances, tmpFavLoc, tmpFavDJ WHERE performerID = tmpFavDJ.favDJ AND location = tmpFavLoc.favloc;

#----------- 2nd query modified for MySQL ---------------------

#

SELECT DISTINCT diskJockey.performerID FROM location, performances, diskJockey, performers WHERE (TO_DAYS(NOW())-TO_DAYS(performances.date)) < 365 AND performances.promotionsGroups = "" AND performances.location = location.locationID AND location.city = performers.residentCity AND diskJockey.performerID = performers.performerID;

 In addition to nested queries MySQL also does not support foreign keys so we had to modify our initial design as a result of this. In the initial status report the DJ and Celebrity entities were weak entities, with keys that referenced the performers entity. This was changed and they were both made strong entities.

If you (or someone else) were to continue working on this project, what would you tackle next? What would a "final" version of your project look like if it were completely finished?

Make some strings longer

Comments of Group Format

Emeka

I felt the group project was a good way for us to learn. Because every member of the group had different ideas and different levels of skill on the subject, we were able to feed of each others knowledge, which in my mind let to a much sharper learning curve.

Seran

I enjoyed the learning to use MySQL and actually apply the concepts we’ve learned in class. I think that our group worked out fairly well since we all were pretty laid back and no one tried to slack off or take control of the group. We ended working on some aspects of the project together, such as getting the MySQL tables working and entering the data into the database, while other aspects were handled mostly by one person (web interface, diagramming, and complex queries). I think that having extra credit for early submission was a very good idea because there were enough pit-falls and gotchas that if we hadn’t tried to finish early, we might not have had time to get the database completely working.

Andrew

I personally felt that the group format allowed us to tackle a more complex and exciting design project then would be possible with just one person. However, I personally felt lost with the “status report” in the sense that were we suppose to pace ourselves with the status reports or could we jump ahead and try to complete the project as early as we can?

1
2

